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Toxic Effects of Lead on Neuronal
Development and Function

by Robert Freedman,* Lars Olson,' and Barry J. Hoffer'

The effects of lead on the development of the nervous system are of immediate concern to human health.
While it is clear that lead can affect neuronal development at levels of exposure within the range found in
the environment, the particular mechanism of the disruption is not readily ascertained. Lack of knowledge
of the mechanism of lead-induced damage hampers its treatment and prevention. The goal of our research
is to develop a model system in which the effects of lead on central nervous system development can be
demonstrated. The complexity of the brain hampers such investigations because often it is not clear if
apparent toxic effects represent changes secondary to somatic changes, such as endocrine or hematological
defects, that could alter brain development, or even transneuronal effects caused by toxicity at a distal site
that deprives a brain area of a synaptic input needed for its proper development. A related problem is the redun-
dancy of compensatory systems in the brain. Such systems may disguise the severity of the initial toxic insult
and themselves can cause functional disturbances.

To study neuronal development in a system that minimizes such difficulties, we have grafted discrete brain
regions derived from rat fetuses into the anterior chamber of the eye of adult hosts. The brain pieces continue
organotypic development in the eye, but are isolated from possible secondary changes due to alterations in
the development of the endocrine and other somatic systems because the adult host has these systems already
fully developed. Similarly, effects mediated by connecting brain areas are minimized since the transplant is
isolated in the anterior chamber of the eye. Using this system, we have discovered that lead induces a hyper-
noradrenergic innervation of central nervous system tissue. The increased innervation is observed not only
structurally, but also functionally. Since norepinephrine is an inhibitory neurotransmitter, this ingrowth may
explain the profound slowing of discharge of cerebellar neurons recorded in grafts of lead-treated animals.
Studies in other tissues suggest that increased axonal ingrowth may be a general problem of lead intoxication
that encompasses many brain areas, as well as peripheral sympathetic systems. Syndromes such as hyperactivity

might be the behavioral consequence of these alterations in neuronal development.

Introduction

Recent studies combining the techniques of neuro-
psychology, inorganic analytic chemistry, and epidemiology
have provided important new insights into adverse effects
of low-level lead exposure on the developing central ner-
vous system. Perinatal exposure yielding blood levels of 300
to 600 ug/L, documented by measurements in body fluids
or tissue, has been shown to result in clearcut behavioral,
neuropsychological, and electroencephalographic abnormal-
ities (I-7). While the mechanisms of these lead-induced
changes are unclear and may be influenced by many other
factors, such as nutrition (8) and the particular test paradigms
used (9), the widespread environmental burden of this heavy
metal provides a strong impetus for further experimentation.

Homologous transplantation of fetal rat brain tissue to the
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anterior chamber of the eye is a useful method for study-
ing potentially deleterious effects of heavy metals on defined
areas of the developing central nervous system. One specific
advantage of the grafting technique is that graft and host
brain will share the same circulation and therefore be
exposed to similar blood concentrations of lead for identical
time periods. It thus becomes possible to compare effects
of lead on any given transplanted area of the brain that has
been exposed to lead during development with the corre-
sponding area of the host brain, exposed to the same lead
levels, but only in the adult state. A second advantage of
the graft is its relative isolation. Thus, lead-induced deficits
cannot be compensated by alterations in afferent input or
reorganizations involving other brain areas. An additional
advantage of the graft is its small size. Most grafts are 3
to 15 mm?3 in volume. This facilitates an extensive histologi-
cal and physiological analysis of a definite brain region, a
task difficult to achieve % situ.

In following sections, we will present specific examples
of how lead exposure causes an increased adrenergic fiber
outgrowth in the anterior chamber of the eye; how this may
result in altered physiology of developing cerebellar grafts
in oculo; and how similar, albeit more modest, changes can
be observed in situ after lead administration.
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Results

Actions of Lead on the Adrenergic Ground
Plexus of the Iris

Injections of 5 uL of a 1.4 mM solution of lead acetate
(PbAc) into the anterior chamber of the eye caused a signifi-
cant adrenergic hyperinnervation of the irides as compared
to sodium acetate (NaAc)-treated control irides. Increas-
ing the dose of lead by giving 7 or 42 mM PbAc solutions
did not significantly increase the extent of the hyperinner-
vation. Even at these high concentrations, lead caused
minimal morphological changes of the individual fibers in
the sympathetic ground plexus. The fluorescence intensity
of the nerve fibers was normal or slightly below normal.
It is important to note that injection of sodium acetate into
the eye chamber caused a mild hyperinnervation of the iris
(Fig. 1a), but lead acetate caused an even larger degree
of hyperinnervation. The time course shown in Figure 1
indicates that the lead-induced hyperinnervation is completed
in 3 days and remains stable for at least 2 weeks. When
data from the last three time points are combined, the ef-
fect of 1.4 mM PbAc is significant at the p < 0.001 level,
as is the effect of 422 mM PbAc (Fig. 1a). In the lead-treated
irides, irregular bundles of fluorescent sympathetic axons
not normally seen were also present. It was also obvious
that the higher lead concentrations caused a slight inflamma-
tory reaction in the irides as they were sometimes swollen
and contained macrophages.

In sharp contrast to lead, mercury caused marked degen-
eration of adrenergic nerves (Fig. 1b). The time course of
this change was followed using 3.5 mM mercury chloride
solutions (Fig. 1¢). Nerves began to degenerate and dis-
appear within 24 hr after injection. At this time point, most
nerves had disappeared in some irides, leaving only the pre-
terminal axon bundles that reach the dilator plate through
the choroid membrane and ciliary body. Such axon bundles
contained axons with terminal swellings and increased bead-
ing. Other irides showed only patches of degenerated plexus
while the rest of the sympathetic nerves were thinner,
smoother, and had a lower fluorescence intensity than nor-
mal. At 3 days, mercury-treated irides had only 35% of
the nerve fibers normally found (Fig. 1¢). In some irides,
however, signs of recovery were apparent at this time point.
In such cases, nerve terminals were varicose and thus had
a more normal morphology than at day 1. There were also
signs of regenerative sprouting from the cut axon bundles.
After 2 weeks postinjection, the mean nerve density had
recovered to almost 80%, showing a significant regenerative
sprouting from the remaining nerve plexus. The reconsti-
tuted adrenergic ground plexus had a clearly abnormal
organization, however, characterized by more axon bundles
and straighter running intersecting terminals.

The changes of adrenergic nerve density caused by 14
mM lead were confirmed by an independent technique in
one experiment wherein irides were incubated in labeled
noradrenaline before fluorescence microscopy (Fig. 2).
Transmitter uptake into lead-treated irides was 133 + 7%
(n = 9) and in NaAc-injected irides was 115 + 5% (» =
9) as compared to noninjected controls (100 + 6%; »# = 6).
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FIGURE 1. Semiquantitative estimations of changes in adrenergic nerve
density in irides following intraocular lead or mercury injections, (@) The
effects, on an extended scale, of 1.6 mg/mL of NaAc (middle bar) or
PbAc (right bar) 5 days after treatment. Values are given as mean +
SEM as percent of normal. PbAc is highly significantly (p < 0.001) dif-
ferent from both NaAc and normal. NaAc is significantly (p < 0.05) higher
than normal. (b) Degenerative effects of a high dose of mercury chloride
(right bar) as compared to sodium chloride (left bar) 7 days after treat-
ment. The difference is highly significant (p < 0.001). It is probable
that some regeneration of adrenergic nerve terminals has already oc-
curred (see Fig. 1¢). (¢) Time course of changes in density of adrenergic
nerves following intraocular lead or mercury injections as compared to
corresponding controls. A low dose of lead causes a moderate hyperin-
nervation reaching significance 3 days after treatment. When the values
from 3 to 14 days are combined, the lead-induced hyperinnervation is
highly significant (» < 0.001). Conversely, a moderate dose of mercury
causes extensive degeneration of adrenergic nerves, reaching a max-
imum around day 3 (p < 0.001). At day 14, substantial regeneration
of nerve terminals has occurred, making this value significantly larger
than the day 3 value (p < 0.05). Mean + SEM of 5 observations (Pb
and Hg) or 10 observations (5 NaCl + 5 NaAc controls).

The difference between noninjected controls and lead-treated
animals is clearly significant; the difference between lead
and NaAc animals is of borderline significance. The sodium
acetate group did not significantly differ from the noninjected
controls.

Effects of Chronic Lead on
Intraocular Transplants

One percent lead acetate in the drinking water was
tolerated well by the recipient rats. Blood levels of 450 to
500 mg/L were elicited by this dose. There were no gross
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neurological disturbances. In a few experiments, 2% PbAc
was used. This lead concentration in the drinking water
reduced the weight gain of recipient animals considerably.
In general, lead treatment of the host had no adverse effects
on the process of endothelial budding and vascularization
of the transplants from the host iris. There were no petechial
hemorrhages or delays of vascularization.

The cerebellar anlage was chosen for our initial grafting
s experiments because the cerebellum has been reported to
be especially sensitive to lead intoxication. It is in the
- cerebellum of developing animals that one first finds hemor-
rhages after very high-level intoxication (Z0). The cerebellar
bud was grafted from two prenatal stages of development:
14 days of gestation, at which stage control grafts will show
vigorous growth in oculo, and 16 days of gestation, when
grafts will reach a final size iz oculo that does not exceed
the size when grafted. As can be seen from Figure 3, there
are no effects of 1% lead on cerebellar transplant growth
at either of the two stages. Moreover, as noted above, there
were no petechiae or other disturbances of the vasculature
of the developing cerebellar grafts. Preliminary studies indi-
cate that the typical trilaminar histological organization of
the cerebellar cortex seen in control grafts (Z1) is intact in
lead-treated grafts, taken at either prenatal stage.

| Cerebellar grafts in NaAc-treated rats showed Purkinje
M onols NaAc PEAC cell spontaneous activity indistinguishable from that seen
in normal animals. A total of 30 neurons were recorded from
FIGURE 2. Effect of lead on uptake of [*H]-noradrenaline in rat iris follow- four grafts, all with urethane (1.0-1.25 g/kg) anesthesia. The
ing intraocular injection of 14 mM PbAc (right bar) or 2.8 mM NaAc (mid-  cells in all four grafts had a sustained spontaneous discharge
dle bar). mdc:ngeﬁacﬁ&cgg 3 da);;flstefp trzagr(lﬁ;lt-ﬂ’ll; hgi;fead-treaid with an average rate of 25.8 + 2.4 Hz. Action potential trac-
'oup 1S S eren m No; .U1); lerence be- 1 3 H H 3

geeir,l the lead andysodium group is bon}er]ine §ig1}iﬁcant. The difference ]fngi’hl;l tet’spl!{ct’;lmteﬁ‘v ﬂ hlStffrmmji’ﬁand rate meter records
between the NaAc-treated and normal is nonsignificant. Ior three typical cells from ee erent grafts are shown
in Figures 4 and 5. The regularity of the discharge pattern
is indicated by the prominent model peak in the histogram.
The distribution of firing rates for these animals is indicated

in Figure 6.
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FIGURE 3. Effects of chronic 1% PhAc on growth of the cerebellar anlage #n oculo. Cerebellar grafts were taken from fetuses with a crown rump length
of 11 to 12 mm corresponding to gestational days 14 (@), and 15 to 17 mm, gestational days 16 to 17 (b). Grafts from more immature donors grew
to larger final sizes. There were no significant effects of lead on growth in either of the two groups. (@) 7 = 19 to 24; and () 21 to 28.
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FIGURE 4. Spontaneous discharge from a single Purkinje cell in a NaAc-
treated animal. (A) Action potential record photographed from the
oscilloscope. (B) Interspike interval histogram with prominent model
peak indicating regularity of discharge. Abscissa calibration is for full
scale. (C) Rate meter record again showing sustained regular discharge.

125-
A, =
100-

75-

counts

i lif20
l A it l
30 SEC

FIGURE 5. Spontaneous discharge of Purkinje cells from cerebellar grafts
in two NaAc-treated rats. (A,) Rate meter and (A4,) interspike interval
histogram from a cell showing a sustained rapid discharge rate. (B) Rate
meter showing a slower but still regular discharge rate in the second Purkinje
neuron.
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FIGURE 6. Histogram of spontaneous discharge rates in Purkinje neurons
from PbAc-treated (open bars) and NaAc-treated (filled bars) cerebellar
grafts. Differences in the two groups are significant, with p < 0.001.
Asterisk (*) indicates data from cells from the only lead-treated graft -
containing spontaneously active Purkinje neurons.

In sharp contrast, Purkinje cells in grafts from PbAc-treated
animals showed almost no spontaneous activity (Fig. 6). A
total of 20 grafts in 13 animals were studied. Urethane
(04-0.7 g/kg) was used for 18 grafts, and halothane (0.5%)
was employed for 2 grafts. These lower doses of anesthetic
were necessitated by the greater sensitivity of the PbAc-
treated rats to anesthetic-induced respiratory depression,
which we observed in our initial experiments. A total of 63
Purkinje neurons in 18 of the grafts (16 with urethane and
2 with halothane) were totally silent except when mechanical-
ly stimulated by the electrode tip or when excited by per-
fusion of penicillin (Fig. 7). In one graft, three cells were
found which discharged initially but became silent after 3
to 4 min. Only in one graft were Purkinje neurons recorded
with a discharge pattern which resembled that seen nor-
mally (Fig. 6). A total of eight cells were found in this
transplant with an average discharge rate of 21.1 + 3.1 Hz.
The distribution of discharge rates for the lead-treated rats
is shown in Figure 6.
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FIGURE 7. Rate meter records of Purkinje neuron discharge from a single
cell in a lead-treated animal. Note the absence of spontaneous discharge
(A). After superfusion of 10,000 units/cc penicillin (PCN), a regular
discharge is induced that persists after penicillin superfusion is discon-
tinued (B). Records (A) and (B) are contiguous in time. Similar
responses to PCN were seen in neurons in two other lead-treated

grafts.
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To control for any systemic depressant effects in the lead-
treated animals, the host animals’ cerebellum was studied
in the 12 animals bearing the 18 “‘silent’’ grafts. In all cases,
vigorous, sustained Purkinje cell spontaneous discharge was
seen, similar to our previous studies (Z2). The discharge
rate for 72 host Purkinje cells (at least 5 per animal) was
34.1 + 2.7 Hz. Again, the interspike interval histograms
manifested regular, normally appearing discharge patterns.

Effects of Postnatal Lead Exposure on
Cerebellar Purkinje Neurons and Adrenergic
Innervation in Situ

In view of the striking hypoactivity of cerebellar Purkinje
neuron discharge seen in the intraocular cerebellar grafts that
matured in host animals receiving lead in their drinking water,
experiments were designed to see if these results could be
generalized to the developing brain in an intact organism. The
mean spontaneous firing rate of cerebellar Purkinje neurons
was found to be significantly lower in adult animals that receiv-
ed 8 mg PbAc/kg body weight during their first 20 days of
life than in animals that received either 1 mg PbAc or 8 mg
NaAc/kg body weight (Fig. 8). Moreover, the distribution of
the firing rates of the Purkinje cells differed; there was a
preferential loss of faster firing cells in the 8 mg PbAc/kg body
weight group. This hypoactivity was not due to reduced
weight gain since animals malnourished via increased litter
size manifested normal electrical activity of Purkinje cells.

In an effort to establish whether lead-induced adrenergic
hyperinnervation could also be seen iz situ, rat pups were
exposed to PbAc or NaAc postnatally for 20 days. Cortical
smears were subsequently taken from animals after matura-
tion, and the density of noradrenergic terminals was com-
pared in the two groups by fluorescence histochemical
measurements. As shown in Figure 9, all three cortical regions
sampled showed increased norepinephrine varicosities in the
lead-treated animals. In a parallel fashion, levels of
norepinephrine in cortex, as measured by HPLC, are also
modestly elevated after perinatal lead exposure.

Discussion

The data in this communication demonstrate that chronic
lead treatment produces profound changes in cerebellar
transplant electrophysiology. These are seen in the absénce
of any alterations in cerebellar graft morphology or gross
histological organization. In addition, the brain of the adult
host animal does not develop lead-induced electrophysiologi-
cal abnormalities. Previous animal investigations also have
suggested that the developing brain is selectively sensitive
to blood and tissue lead levels that are similar to those
obtained in the present investigation. For example, exposure
of the neonate to low-level lead results in marked changes
in central nervous system responsiveness to visual stimula-
tion (3), alterations in seizure responses (13), delayed matu-
ration (Z4), and behavioral abnormalities (2,7,15); adult ani-
mals in these studies showed no changes after chronic low-
level lead treatment.
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FIGURE 8. Bar graph showing mean discharge rate + SEM of cerebellar Purkinje neurons from animals injected postnatally with NaAc, 1 mg PbAc/Kg,
8 mg PbAc/Kg, and noninjected controls. In addition, the mean firing rates of Purkinje neurons from malnourished animals and from animals con-
comitantly raised in normal-sized litters are illustrated. The rates in 8 mg PbAc/kg animals are significantly different from those of NaAc animals (p < 0.01).
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Routine histological examination of cerebellar grafts, using
a variety of parameters, indicated no obvious differences
in lead-treated versus NaAc-treated grafts. Similarly, we have
observed no differences in growth, determined by serial
measurements of surface area of cerebellar grafts in oculo
as a function of this type of lead exposure (16). Indeed, the
literature on lead exposure in this dose range has shown
little evidence of induced histological abnormalities, either
in man or in animal models (7). It must be cautioned, how-
ever, that no cytochemical studies to localize transmitter-
specific cells or fibers were carried out in these previous
studies. It has been previously demonstrated that adrenergic
and cholinergic fibers from the autonomic ground plexus of
the iris provide a functional input to cerebellar grafts (I8).
The density of adrenergic afferent input is, in fact, altered
by chronic lead treatment.

The most striking finding from our study is the absence
of spontaneous activity in transplanted Purkinje cells from
lead-treated animals. NaAc-treated grafts, in contrast, show-
ed a spontaneous Purkinje cell discharge indistinguishable
from that found normally. Several considerations argue
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FIGURE 9. Cortical noradrenergic varicosities in animals treated neonatally
with PbAc or NaAc. Estimates were made by blind observers using
Falck-Hillarp fluorescence histochemical techniques. Note elevation in
lead-treated animals in all three cortical regions.

against this effect of lead as secondary to some nonspecific
local or systemic toxicity. First, as noted above, there were
no routine histological abnormalities in the lead-treated
transplants, either in terms of cell numbers, cell appearance,
or laminar organization. Second, even though there was little
spontaneous discharge of the Purkinje cells, sustained regular
firing could be elicited in several instances by transient appli-
cation of an excitatory agent, such as penicillin. Finally,
Purkinje cell activity was normal in the host cerebellum of
all lead-treated animals. A previous study has demonstrated
that 9- to 90-day-old rat pups with neonatal blood lead levels
of 500 to 750 ug/L did not generate normal electrophysiologi-
cal responses in occipital cortex to visual stimuli (3). Evoked
field potentials in these animals were either lacking or of
longer latency and altered waveform as compared to nonlead-
treated neonate controls or to adult lead-treated animals. -
Thus, the absence of activity in lead-treated grafts probably
represents a specific and long-lasting interaction of this metal

with the neuronal circuitry within the developing graft. -

Interestingly, although lead-induced changes in motricity
have been reported in both animal models (Z9-22) and in
man (5,6,23,24) after perinatal exposures yielding blood levels
of 400 to 600 ug/L, these changes have involved the general
level of motor activity rather than specific cerebellar func-
tional deficits. It is possible that, in the intact animal, direct
effects of lead on cerebellar activity are compensated by
changes in afferent input from other brain areas. Such
“‘plastic’’ changes have been demonstrated after lesions in
many brain regions, using both anatomical and physiological
parameters (25,26). Of course, such compensatory mech-
anisms would not be operative in the graft. It is not clear,
then, whether the electrophysiological differences reported
here between graft and host Purkinje cells are due to lead
exposure in the developing versus mature brain, or due to
lead exposure in a brain graft versus brain ¢ sity with conse-
quently different lead levels (27).

The present study reveals that lead causes an increased
adrenergic nerve fiber density. Lead has previously been
found to increase noradrenaline levels in the central nervous
system of immature animals (28). Whether this increase is
due to a change in the biochemistry of the noradrenergic
neurons or an augmentation of growth is unclear. Our pre-
sent findings show that lead can stimulate growth of mature
peripheral sympathetic nerves. If lead does promote signifi-
cant growth of central noradrenergic nerves in a similar
fashion, this might be one of the factors behind the sug-
gested lead-induced hyperactivity in children (29).
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